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Various 2-alkylidenethietanes were synthesized by intramolecular nucleophilic substitution reactions at
an sp2 carbon of vinyl halides with thiolate moieties. The reaction pathway of the substitution reactions
was confirmed as a very rare SNVp mechanism by theoretical and experimental studies.
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Concerted nucleophilic substitution at an sp3 carbon, typically
an SN2 reaction, is one of the most fundamental reactions in organ-
ic chemistry, giving a substitution product with inversion of the
configuration.1 On the other hand, two mechanisms are proposed
for concerted SN2 reaction at a vinylic sp2 carbon,2 namely, the
SNVp and SNVr pathways. In the SNVp mechanism, a nucleophile
interacts with the p* orbital of the vinylic carbon and gives a sub-
stitution product with retention of the configuration (Scheme 1a).
In the SNVr mechanism, a nucleophile attacks at the r* orbital of
the C–X bond and substitution occurs with inversion of the config-
uration (Scheme 1b). However, both SNVr and SNVp mechanisms
were so far considered as unfavorable processes at unactivated
vinylic carbons.3

Recent theoretical studies have indicated the possibilities of the
SNVr and SNVp mechanisms on unactivated vinylic carbons.4 For
example, theoretical calculations performed by Glukhovtsev show
that the activation energy of in-plane nucleophilic attack (SNVr) of
a chlorine ion to chloroethene (32.6 kcal mol�1) is about
10 kcal mol�1 lower compared to the out-of-plane attack (SNVp)
(42.7 kcal mol�1).4a Lee reported that in the gas-phase vinylic sub-
stitution of chloroethene by OH� and SH�, the SNVp mechanism is
ll rights reserved.
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favored, whereas the SNVr pathway is preferred by Cl� and Br�.4c

However, estimated activation energies of both reaction pathways
in those theoretical studies were so high that the substitution reac-
tions hardly proceed under the mild reaction conditions. There are
a few reports on substitution reactions at an sp2 carbon atom,
which suggested that the reaction proceeded in an SNVr manner.5

The substitution reaction of alkenyliodonium salts was found to
give the products with inversion of the stereochemistry via an
intermolecular SNVr mechanism.6 2-Bromoallylamines were
cyclized to aziridines by basic treatment and the stereochemistry
of the products suggests that the amino group approaches from
behind the bromine atom.7
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We recently showed that haloalkenes bearing intramolecular
hydroxy, sulfonamide, active methine, and thiol counterparts at
suitable positions gave the corresponding 5-membered cyclized
products via an intramolecular vinylic substitution reaction.8 Con-
cerning the cyclizations with O, N, C-nucleophiles, the reactions
proceeded only with E-isomers to afford the corresponding cycli-
zed products. The Z-isomers gave no cyclization products with
recovery of the starting haloalkenes (Scheme 2), being consistent
with our theoretical studies by DFT calculations.

In contrast, it was found that the cyclization reaction with thiols
proceeded with both E- and Z-isomers in spite of the low product
yield (Scheme 3a). The activation energies for the SNVp reactions
of thiols were relatively small, which would suggest the SNVp path-
way as a possible mechanism. It was also found that a unique
4-membered compound, 2-alkylidenethietane 1a,9 was formed in
78% yield by the cyclization of thiol 2a (Scheme 3b). In this case,
only the SNVp type transition structure (activation energy:
20.0 kcal mol�1 in DMF) was formed, probably due to steric repul-
sion between the thiolate and the isopropylidene group.

In this Letter, we present a study on the scope of this thietane
formation by the cyclization of 3-bromo-3-alkenethiolates and
experimental studies to confirm the reaction mechanism.

The synthetic routes to the starting materials are summarized
in Schemes 4 and 5. 3-Bromo homoallyl alcohols 5 were synthe-
sized by the reaction of 2,3-dibromopropene (3) with aldehydes
4 in the presence of tin powder (Scheme 4a).10 The reaction of
(Z)-b-bromoallylsilane 6 with 3-phenylpropionaldehyde (4g) gave
5g with syn selectivity (Scheme 4b).11 These homoallyl alcohols 5
were converted into the corresponding thioacetates 7 by substitu-
tion of the intermediate tosylates with potassium thioacetate or by
Mitsunobu reaction with thioacetic acid12 (Scheme 5).

Although the cyclization of tetrasubstituted vinyl bromide 2a
proceeded smoothly (Scheme 3), the cyclization of thiol 2b with
a terminal methylene moiety gave only a trace amount of the
desired thietane 1b in a complex mixture including disulfide 8
(Scheme 6).13

We envisioned that generation of the thiolate anion in situ
could prevent the formation of disulfide 8. As expected, when thio-
acetate 7b was treated with 1.5 mol equiv of K2CO3 and 10 mol
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equiv of MeOH at 120 �C in degassed DMI, thietane 1b was ob-
tained in 93% yield (Scheme 7).14
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Figure 1. Transition structures for the nucleophilic cyclization of thiolate anion 11 [B3LY
italicized numbers are the values in the gas phase.

Table 1
Synthesis of 2-alkylidenethietanes 1a

Entry Thioacetate 7 Conditions Thietane 1 (yield/%)b

1

Br

S

Ph

Me

O
MeMe

7a

120 �C, 3 h
S

Ph
1a (94)

Me

Me

2

Br

S Me

O

Ph

7c

120 �C, 3 h

S

Ph

1c (92)

3c

Br

S

(CH2)4CO2Et

Me

O

7d

100 �C, 10 h

S

(CH2)4CO2Et

1d (67)

4
Br

S Me

O

7e

120 �C, 3 h

S

1e (<65)d

5
Br

S Me

O

OMe
7f

120 �C, 2 h

S

OMe
1f (30)

6
Br

S Me

O

Ph

Ph

7g

120 �C, 1.5 h

S

Ph

Ph 1g (92)

a Reactions were carried out in degassed DMI with 1.5 mol equiv of K2CO3 and 10
mol equiv of MeOH.

b Isolated yield.
c 10 mol equiv of EtOH was used instead of MeOH.
d 1H NMR yield.
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with intramolecular thiolate moieties, and the results are summa-
rized in Table 1. The yield of thietane 1a was improved to 94% by
the use of thioacetate 7a (Table 1, entry 1). 2-Methylenethietanes
1 possessing primary and secondary alkyl groups at the C(4)-posi-
tion could be synthesized in good yield (entries 2–4). Benzylic thio-
acetate 7f was cyclized to thietane 1f in moderate yield due to the
concurrent elimination of thioacetic acid, forming a conjugated
diene as a side product (entry 5). 3,4-Dialkylsubstituted 2-methy-
lenethietane 1g15 was formed smoothly in 92% yield (entry 6).

Formation of a 5-membered ring proceeded from thioacetate
916 to give a mixture of 2-methylenetetrahydrothiophene 10 and
2,3-dihydrothiophene 100 in 83% yield (Scheme 8a). This result
prompted us to try a competition reaction among 4- versus
5-membered ring formation. It was noted that the reaction of
thioacetate 7h gave only 4-membered ring product 1h without
any 5-membered ring compound (Scheme 8b).

Next, we explored theoretical calculations17 using the GAUSSIAN

program.18 All calculations were performed at the B3LYP19/6-
31+G(d) level and the solvent effect was included by using the
Onsager continuum model20 for DMF (e = 37.06) as a solvent.21

Interestingly, the cyclization of thiolate anion 11 from 7a gave
the SNVr and SNVp transition states (Fig. 1), both of which have
low enough activation energies (22.4 kcal mol�1 for SNVr,
18.2 kcal mol�1 for SNVp) to undergo substitution reactions under
the presented reaction conditions.
P/6-31+G(d), SCRF (dipole, solv = DMF)]. Selected bond lengths are shown in Å. The
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We envisaged that the reaction mechanism could be confirmed
by examination of the stereochemical outcomes of two reaction
pathways, that is, the inversion of the configuration for SNVr and
the retention for SNVp. Thus, the Z- and E-isomers of thioacetates
7i were used for the substitution reactions to clarify the reaction
mechanism. The syntheses of Z-7i and E-7i are shown in Scheme
9. Allene 14, synthesized from undecanoyl chloride (12) and phos-
phorous ylide 13,22 was treated with LiBr in acetic acid,23 and then
NaBH4 to afford both the Z- and E- isomers of homoallyl alcohol 3i,
which were transformed to thioacetates 7i following Scheme 5.24

The cyclization of Z-7i and E-7i yielded thietanes Z-1i and E-1i,
respectively, with complete stereospecificity (Scheme 10).25 These
results suggest that the present cyclization proceeds with reten-
tion of the configuration, namely by the SNVp mechanism.
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